
EMQ X 4.3 trie improvements

www.emqx.io

EMQ X team· 2021-05

What problem does "trie" solve

Given a set of strings, how to quickly find out if
any input string exsits in the set.

Example set:
• to
• tea
• ted
• ten
• tn
• inn
• A

Example query:
Is the word "trie" in this set?

What's trie

Also called digital tree or prefix
tree, is a type of search tree,
a tree data structure used for
locating specific keys from within a
set.

--- wikipedia

https://en.wikipedia.org/wiki/Search_tree
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Data_structure

MQTT topics trie

The main difference is that the
nodes are not letters, but 'words'
of MQTT topic name split by '/'

•A/B/#
•A/+/X
•FOO/+/BAR

Search procedure in EMQ X (before 4.3)

When searching for "FOO/something/BAR"

•node root ---> edge > 0
•edge {root, #} --> not found
•edge {root, +} --> not found
•edge {root, FOO} ---> go to node FOO
•node FOO ---> edge > 0
•edge {FOO, #} ---> not found
•edge {FOO, +} ---> to node FOO/+
•node FOO/+ ---> edge > 0
•edge {FOO/+, #} ---> not found
•edge {FOO/+, +} ---> not found
•edge {FOO/+, BAR} ---> to node FOO/+/BAR
•Find node FOO/+/BAR ---> found it!

•edge {FOO, something} --> not found

Topics Trie in EMQ X (before 4.3)

Think again: do we really need edges?

Topics Trie in EMQ X (since 4.3) -- no compaction

1. The virtual 'root' node is removed
2. No more edge information
3. Internally stored in one table with a tag

Search procedure in EMQ X (since 4.3) -- no compaction

When searching for "FOO/something/BAR"

•"#" --> not found
•"+" -> not found
•"FOO" --> prefix count > 0
•"FOO/#" ---> not found
•"FOO/+" ---> prefix count > 0

•"FOO/+/#" ---> not found
•"FOO/+/+" ---> not found
•"FOO/+/BAR" --> found topic

•"FOO/something" --> not found

Edges are not stored when inserting, but computed while searching

Topics Trie in EMQ X (since 4.3) -- with compaction

Compaction: topic's non-
wildcard levels can be merged

Search procedure in EMQ X (since 4.3) -- with compaction

When searching for "FOO/something/BAR"

•"#" --> not found

•"+" -> not found

•"FOO" --> not found
•"FOO/#" ---> not found
•"FOO/+" ---> prefix count > 0
• "FOO/+/#" ---> not found
• "FOO/+/+" ---> not found
• "FOO/+/BAR" --> found topic

•"FOO/something" --> not found
•"FOO/something/#" -> not found
•"FOO/something/+" -> not found
•"FOO/something/BAR" -> not found

Disadvantage of compaction

Enumerate all possible prefixes when searching

When publishing to "1/2/3/4/5"

• #
• +
• 1/#
• 1/+
• 1/2/#
• 1/2/+
• 1/2/3/#
• 1/2/3/+
• 1/2/3/4/#
• 1/2/3/4/+
• 1/2/3/4/5
• 1/2/3/4/5/#

Lookups = Level * 2 + 2

4.3-rc.4 vs 4.3.0 (100,000 wildcard topics)

10 subscribers (simulated), 10,000 topics each
Insert Pattern: "device/{{id}}/+/{{num}}/#"
10 publishers (simulated), 100,000 lookups each
Search Pattern: "device/{{id}}/foo/{{num}}/bar"

4.3-rc.4 4.3.0 no-compaction 4.3.0 compaction

Trie tables RAM 68MB 29MB 14MB

Lookup latency
(per-client avg)

11ns 20ns 126ns

Insert latency
(per-client avg)

5.7ms 3.4ms 500ns

* tested with set type ets

4.3-rc.4 vs 4.3.0 (80,000 wildcard topics)

8,000 subscribers (simulated), 10 topics each
Insert Pattern: "device/{{id}}/+/{{num}}/#"
80,000 publishers (simulated), 100 lookups each
Search Pattern: "device/{{id}}/foo/{{num}}/bar"

4.3-rc.4 4.3.0 no-compaction 4.3.0 compaction

Trie tables RAM 109MB 46MB 23MB

Lookup latency
(per-client avg)

40ms 10ms 44ms

Insert latency
(per-client avg)

3.6s 1.3s 282ms

* tested with set type ets
* CPU saturated

Cluster test (2 million subscribers)

3-Node Cluster

8 Cores
16 GB RAM
4000 Subscribe/s

Average response time

Successful requets/s

Best practices

o Avoid sharing prefixes between subscribers
o Good example: foo/{{client_id}}/+/bar
o Bad example: foo/+/{{client_id}}/bar

o Avoid using topics with too many levels
o Good example: foo/{{client_id}}/my.application.namespace/#
o Bad example: foo/{{client_id}}/my/application/namespace/#

Summary

• Trie compaction is made default in 4.3.0
• Change config with:

broker.perf.trie_compaction=false # in emqx.conf
OR
export EMQX_BROKER__PERF__TRIE_COMPACTION=false

• Performance compare base (v4.3-rc.4) in this presentation includes
other optimizations which are demoed in another session by
William Yang

Thank You

18058747908 400-696-
5502

contact@emqx.io

Kudos to William Yang for the trie
compaction idea

