=MQ

EMQ X 4.3 trie iImprovements

EMQ X team- 2021-05

=Ma What problem does "trie" solve

Given a set of strings, how to quickly find out if
any input string exsits in the set.

Example set: Example query:

* to Is the word "trie" in this set?
¢ fea

e ted
* ten
° 1In
°* Inn
e A

=M What's trie

Also called digital tree or prefix

tree, is a type of search tree,

a tree data structure used for O
locating specific keys from within a yA \

set. () @ (i)
1
--- wikipedia

https://en.wikipedia.org/wiki/Search_tree
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Data_structure

=Me MQTT topics trie

The main difference is that the
nodes are not letters, but 'words'
of MQTT topic name split by '/’

H
eﬁ 0
Hai0%0

oA/B/# @
o A/+/X
eFOO/+/BAR

=Ma Search procedure in EMQ X (before 4.3)
When searching for "FOO/something/BAR"

*node root ---> edge >0
*edge {root, #} --> not found

*edge {root, +} --> not found

edge {root, FOO} ---> go to node FOO @
*node FOO ---> edge >0
*edge {FOO, #} ---> not found

*edge {FOO, +} ---> to node FOO/+
*node FOO/+ ---> edge >0

“a
©
1080

#

eﬁ

6

€

*edge {FOO/+, BAR} ---> to node FOO/+/BAR
*Find node FOO/+/BAR ---> found it!
*edge {FOO, something} --> not found

= Topics Trie in EMQ X (before 4.3)

Node Table Edge Table
m With Edge

D = EE S
y : # A/B/#
& SN S O

\,
‘. FOO FOO
+ FOO/+

BAR FOO/+/BAR

FOO/+
FOO/+/BAR

Think again: do we really need edges?

="% Topics Trie iIn EMQ X (since 4.3) -- no compaction

A 2

A/B
Al+

A/B/#
Al+IX
FOO/+/BAR

1
1
1
1

1. The virtual 'root' node is removed
2. No more edge information
3. Internally stored in one table with a tag

="Search procedure in EMQ X (since 4.3) -- no compaction

Edges are not stored when inserting, but computed while searching

When searching for "FOO/something/BAR"

o'"'#" __> not found

'"'+" _> not found

*"FOO" --> prefix count > 0

*'FOO/#" ---> not found
*"FOO/+" ---> prefix count > 0

FOO/+/BAR

*"FOO/+/BAR" --> found topic

="¢ Topics Trie in EMQ X (since 4.3) -- with compaction

_ Prefix_|count
A 2

A/B/#
Al+/X Compaction: topic's non-

S wildcard levels can be merged

FOO/+ 1

FOO/+/BAR

=" Search procedure in EMQ X (since 4.3) -- with compaction

When searching for "FOO/something/BAR"

o"#" —-> not found

'"+" > not found

"FOO" --> not found

*"FOO/#" ---> not found FOO/+ 1

*"FOO/+" ---> prefix count > 0
*"FOO/+/#" ---> not found FOO/+/BAR

«"FOO/+/+" ---> not found
*"FOO/+/BAR" --> found topic
*"'FOO/something" --> not found
*"FOO/something/#" -> not found
*"FOO/something/+" -> not found
*"FOO/something/BAR" -> not found

=MQ

Disadvantage of compaction

Enumerate all possible prefixes when searching

When publishing to "1/2/3/4/5"

&
+

1/#

1/+ Lookups = Level * 2 + 2
1/2/4

1/2/+

1/2/3/#

1/2/3/+

1/2/3/4/#

1/2/3/4/+

1/2/3/4/5

1/2/3/4/5/#

4.3-rc.4 vs 4.3.0 (100,000 wildcard topics)

* tested with set type ets

(per-client avg)

4.3-rc.4 4.3.0 no-compaction | 4.3.0 compaction
Trie tables RAM 68MB 29MB 14MB
I(-sgrk-lcjlri)elr?’tear\]/g 11ns 20ns 126ns
Insert latency 5./ms 3.4ms 500ns

10 subscribers (simulated), 10,000 topics each
Insert Pattern: "device/{{id}}/+/{{num}}/#"
10 publishers (simulated), 100,000 lookups each
Search Pattern: "device/{{id}}/foo/{{num}}/bar"

=Ma 4.3-rc.4 vs 4.3.0 (80,000 wildcard topics)

* tested with set type ets
* CPU saturated

(per-client avg)

4.3-rc.4 4.3.0 no-compaction | 4.3.0 compaction
Trie tables RAM 109MB 46MB 23MB
I('s:rk_lcjﬁels:ear\]/g 40ms 10ms 44ms
Insert latency 3.65 1.3s 282ms

8,000 subscribers (simulated), 10 topics each

Insert Pattern: "device/{{id}}/+/{{num}}/#"
80,000 publishers (simulated), 100 lookups each
Search Pattern: "device/{{id}}/foo/{{num}}/bar"

=MQ

Cluster test (2 million subscribers)

T =
SESRIRZE 1] 2000000 2000K
Average response time cenntillllll ——
30 ms \ SEETIRRAE HELEIKEEE
1st | A J
RINEREL B 3-Node Cluster
6000 Successful requets/s

5000 '\7
4000 — *’*—*\‘ s 8 Cores

3000

16 GB RAM
1000 4000 Subscribe/s

0

20:32 20:34 20:36 20:38 20:40
== Efficient MQTT Connect

=MQ

Best practices

o Avoid sharing prefixes between subscribers

o Good example: foo/{{client id}}/+/bar
o Bad example: foo/+/{{client id}}/bar

o Avoid using topics with too many levels

o Good example: foo/{{client_id}}/my.application.namespace/#
o Bad example: foo/{{client id}}/my/application/namespace/#

=MQ

Summary

* Trie compaction is made default in 4.3.0
* Change config with:

broker.perf.trie_compaction=false # in emqgx.conf
OR
export EMQX_BROKER __PERF__TRIE_. COMPACTION=false

 Performance compare base (v4.3-rc.4) in this presentation includes
other optimizations which are demoed in another session by
William Yang

=MQ

Thank You

Kudos to William Yang for the trie
compaction idea

18058747908 400-696-

5502 E contact@emaqx.io

